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Abstract

Increased control demands in applications including high speed milling and hybrid motor design have led to
the utilization of magnetostrictive transducers operating in hysteretic and nonlinear regimes. To achieve the high
performance capabilities of these transducers, models and control laws must accommodate the nonlinear dynamics
in a manner which is robust with regard to system inputs and facilitates real-time implementation. This necessitates
the development of models and control algorithms which utilize known physics to the degree possible, are low-order,
and are easily updated to accommodate changing operating conditions such as temperature. We consider here the
development of nonlinear adaptive identification techniques for low-order, energy-based hysteresis models having
nonlinear parameterizations. We illustrate the techniques in the context of magnetostrictive transducers but they
are sufficiently general to be employed for a number of commonly used smart materials including piezoceramics,
magnetostrictives and shape memory alloys. The performance of the resulting nonlinear identification algorithms are
illustrated through numerical examples.

Index Terms: Magnetostrictive materials, hysteresis, constitutive nonlinearities, nonlinear parameterization,
adaptive estimation

1 Introduction

Piezoceramic, magnetostrictive and shape memory alloy materials are being increasingly considered for use in high
performance applications due to their unique transduction capabilities. Piezoceramic transducers are lightweight,
exhibit both actuator and sensor capabilities, are highly effective for broadband and high frequency transduction, and
have extremely high set point accuracy. These properties are utilized in applications ranging from the design of PZT-
based stages for nanopositioning in an atomic force microscope (AFM) [11, 24] to inertial sensors in accelerometers
[10]. Magnetostrictive transducers also exhibit broadband transduction capabilities, actuator and sensor capabilities,
and the ability to generate large forces while maintaining highly accurate set point placement. This has led to their
use as actuators in industrial applications such as high speed milling and highly sensitive sensors for applications
such as torque sensing in a steering system [6, 21]. Shape memory alloys have the largest work output densities of the
three classes of materials but are inherently slower than piezoceramics and magnetostrictive transducers due to the
cooling required as a prelude to heat-induced phase transformations. The large strain capabilities of SMA actuators
has motivated their use in applications such as active tendon design to attenuate earthquake and wind-induced
vibrations in civil structures [25], microgripper design for biomedical instruments [9], and large force generation for
reconfigurable airfoil design [13].

While these materials provide unique transduction capabilities, the advantageous performance attributes come
at the cost of hysteresis and constitutive nonlinearities throughout most of the drive range. Furthermore, these
inherent material properties are dependent upon environmental conditions and system inputs such as temperature,
drive frequency, and input or residual stresses – see [16, 23] for quantification of these dependencies in the magne-
tostrictive transducer compounds Terfenol and Galfenol. To achieve the transducer capabilities in moderate to high

∗Email: rsmith@eos.ncsu.edu; Telephone: (919) 515-7552 – Corresponding author

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2004 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2004 to 00-00-2004  

4. TITLE AND SUBTITLE 
Nonlinear Adaptive Parameter Esstimation Techniques for Magnetic
Transducers Operating in Hysteretic Regimes 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
North Carolina State University,Center for Research in Scientific 
Computation,Raleigh,NC,27695-8205 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
The original document contains color images. 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

17 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Wound Wire Solenoid

Permanent Magnet

Terfenol−D Rod

Compression
Bolt

Spring
Washer

Cutting Head

−1 −0.5 0 0.5 1

x 10
5

−6

−4

−2

0

2

4

6
x 10

5

Field (A/m)

M
ag

ne
tiz

at
io

n 
(A

/m
)

(a) (b)

Figure 1: (a) Prototypical magnetostrictive transducer employed for high speed high accuracy milling. (b) Hysteretic
field-magnetization relation as reported in [7].

drive regimes, it is necessary to quantify the hysteresis and constitutive nonlinearities in a manner which is suffi-
ciently accurate to characterize the fundamental nonlinear and hysteretic material behavior and sufficiently efficient
to facilitate transducer design and real-time implementation. A fundamental step in the model construction entails
the estimation of model parameters given various system inputs. Furthermore, it is often necessary to adaptively
update parameters to accommodate the inherent changes in material behavior which occur as environmental con-
ditions change. For example, ohmic heating in a magnetostrictive transducer can significantly affect the hysteretic
field-displacement relations exhibited by the transducer whereas Joule heating in an electrostrictive transducer can
eliminate the hysteresis if temperature changes are sufficiently large. While these environmental changes often occur
on a relatively slow time scale, their effects on the model must be accommodated to maintain the fecundity of the
transducer. In this paper, we develop nonlinear parameter estimation techniques in the context of energy-based mod-
els which have been employed to quantify the hysteresis and constitutive nonlinearities inherent to magnetostrictive,
piezoceramic, and shape memory alloy transducers.

To focus the discussion, we consider a prototypical magnetostrictive transducer employed for applications including
high speed, high accuracy milling as depicted in Figure 1a. Input forces and displacements are provides by the
Terfenol-D rod in response to fields generated by the surrounding solenoid due to an applied current. As detailed
in [4, 7, 8], these transducer designs have the capacity for generating broadband, high force responses. However,
they also exhibit varying degrees of hysteresis and constitutive nonlinearities in the relations between input fields
H and the generated magnetization M and strains e as illustrated in Figure 1b as detailed in [7]. Moreover, these
nonlinear and hysteretic relations are temperature-dependent and thus change as the transducer heats during the
milling process. This necessitates the development of adaptive parameter estimation techniques to update models to
maintain the specified cutting accuracy during the milling process.

While this application is quite specific, it illustrates a number of the issues shared by magnetostrictive, piezo-
ceramic and shape memory alloy transducers operating at moderate to high drive levels in variable temperature,
variable stress operating conditions. Furthermore, it will be demonstrated that the modeling framework and nonlin-
ear parameter estimation techniques are sufficiently general to permit direct extension to a wide range of piezoceramic
and SMA devices.

There exist a number of techniques for modeling hysteresis in ferromagnetic and magnetostrictive materials
including micromagnetic relations [3, 12], Preisach representations [1, 22, 32], domain wall models [4, 7, 8, 14, 15],
and homogenized free energy relations [27]. Whereas micromagnetic theory addresses fundamental mechanisms
associated with magnetostriction, its complexity presently precludes its use in real-time control systems. Preisach
models have the advantage of a general and rigorous mathematical framework and can be linearly parameterized in
terms of coefficients to be identified, thus permitting the use of linear adaptive estimation and control algorithms [32].
These advantages are offset, however, by the large number of nonphysical parameters required for general operating
regimes and the theoretical extensions required to accommodate frequency, stress and temperature dependence. The
domain wall models are low-order and have a small number of parameters (e.g., 5-8) which can be correlated with
physical properties of the data. Moreover, the methodology is sufficiently general to encompass ferroelectric and
piezoceramic materials [28, 30] and ferroelastic and shape memory compounds [19] so it provides a unified framework
for quantifying hysteresis and constitutive nonlinearities in a broad range of ferroic compounds [29]. For these reasons,
we employ a domain wall model to quantify the field-strain behavior depicted in Figure 1b. However, the models
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exhibit a nonlinear dependence on parameters which motivates the development of nonlinear adaptive estimation
techniques to accommodate the temperature-dependent hysteresis behavior exhibited by the materials.

In this paper, we extend the techniques of [17, 18] to obtain nonlinear adaptive estimation laws for updating
parameters in the domain wall models. Among the advantages of the parameter estimation algorithms presented
here are the properties that they can be implemented during the operation of the actuator or sensor and require no
additional data collection as required for offline least squares algorithms. One possibility is to employ the parameter
estimation algorithm during actuator operation to identify parameters during the initialization of the milling process
as a prelude to control. Since the behavior of the materials is affected by changing operating conditions, such as
temperature, the estimation algorithm can be used to re-identify parameters in the transducer model to reflect
changes in the material behavior.

A significant difficulty in developing nonlinear parameter adaptation laws is the fact that gradient update methods
are not always sufficient for estimating nonlinearly occurring parameters. To illustrate, consider an error model of
the form

ė = −λe + f(φ, θ)− f(φ, θ̂)

where f is a nonlinear, scalar-valued function, φ denotes measured states, θ and θ̂ respectively denote a nonlinearly
occurring vector of parameters and their estimate, λ > 0 is a scalar, and e is the error between desired and measure
trajectories. Consider the gradient update law

˙̂
θ = e∇fθ̂.

With the standard Lyapunov function, V = 1
2 (e2 + θ̃2), where θ̃ = θ̂ − θ, we see that

V̇ = −λe2 + e
[
f(φ, θ)− f(φ, θ̂) + θ̃∇fθ̂

]
. (1)

If e < 0, it is necessary that ∇fθ̂(θ − θ̂) ≤ f(φ, θ)− f(φ, θ̂) which is satisfied if f is convex. If e > 0, then V̇ ≤ 0 is
ensured if f is concave. Hence, the gradient method does not ensure stability for all θ̂. Moreover, a gradient method
applied to a nonlinear parameterized system may not only be insufficient but may lead to instability. The methods
we discuss here do not strictly rely on a gradient rule but differ depending on the sign of the error as motivated
by (1).

In Section 2, we summarize the hysteresis and transducer models used to characterize the magnetostrictive
transducer depicted in Figure 1a. In Section 3 we review the nonlinear adaptive method for the scalar case given
in [17, 18] and present the extension of this theory to a vector system as is required for the Terfenol-D transducer.
Section 4 provides numerical examples of a nonlinear parameter estimation for both the scalar and vector cases.

2 Actuator Model

In this section, we construct models for the magnetostrictive transducer which can be employed in the nonlinear
parameter estimation algorithm given in Section 3. We develop these models in two steps; (i) the construction of
constitutive models which quantify the inherent hysteresis and nonlinearities in the magnetostrictive material, and
(ii) the incorporation of the constitutive relations into transducer models which specify the device displacement
outputs due to specified current inputs.

2.1 Nonlinear Hysteretic Constitutive Models

we describe here a domain wall model quantifying the hysteretic relationship between an applied magnetic field H and
the magnetization M in a Terfenol-D rod. The premise of this model is that one source of hysteresis in ferromagnetic
materials can be attributed to the impediment of motion of domain walls that are pinned at defects or inclusions
in the material. We provide here those details of the theory pertinent to the subsequent development of nonlinear
adaptive estimation techniques and refer the reader to [14, 15] for details regarding the development of the theory
for general ferromagnetic materials and [4, 7, 8] for the extension of the theory to magnetostrictive transducers.

The domain wall model for the magnetization M produced by an applied magnetic field H will be developed in
three steps; (i) quantification of the anhysteretic magnetization Man, (ii) quantification of the irreversible magneti-
zation Mirr, and (iii) quantification of the total magnetization M .

Physically, Man can be interpreted as the equilibrium magnetization obtained in the absence of material inclusions.
Mathematically, the anhysteretic magnetization can be modeled by quantifying the probability of achieving specified
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energy states through Boltzmann relations. As detailed in [27, 31] − or [28] for the analogous ferroelectric model −
the assumption that magnetic moments can orient only in the direction of the applied field, or diametrically opposite
to it, yields the Ising relation

Man = Ms tanh
(

He

a

)
. (2)

Alternatively, if one assumes that moments have equal probability of orienting in any direction, one obtains the
Langevin model

Man = Ms

(
coth

(
He

a

)
− a

He

)
(3)

which agrees with (2) through first-order terms − see also [5]. In both models, Ms denotes the saturation magneti-
zation and

He = H + αM

quantifies the effective fields where α quantifies denotes a coupling coefficient. A Boltzmann derivation yields the
relation

a(T ) =
HhT

Tc
(4)

where Hh is a biasing field and Tc denotes the Curie temperature. Whereas (4) quantifies the temperature-dependence
of a in certain operating regimes, the predictions that it provides should typically be considered as qualitative rather
than quantitative in nature. Hence, the relation (4) is best interpreted as indicating that temperature-dependence
should be accommodated in some manner − e.g., adaptive estimation techniques − rather than providing an accurate
model quantifying the temperature behavior.

The anhysteretic relations can be utilized to approximate the magnetization at low drive levels but they do not
incorporate the energy loss due to the movement of domain walls and thus can not model high drive levels. To
quantify the total magnetization, it is necessary to incorporate the reversible magnetization Mrev and irreversible
magnetization Mirr. Reversible magnetization occurs when applied field levels are sufficiently small that domain
walls remain pinned while the irreversible component represents the movement of pinning sites which occurs at
higher drive levels. As detailed in [8, 15], Mirr can be quantified as the anhysteretic component minus the losses
required to break pinning sites

Mirr = Man − k
∂Mirr

∂He

where k is a measure of the average energy required to translate the domain wall. This relation can be reformulated
in terms of the applied field as

∂Mirr

∂H
= δ̂

Man −Mirr

kδ − α(Man −Mirr)

where δ = sign(dH) ensures that pinning opposes change in magnetization. The switch δ̂ is 0 if dH > 0 and M > Man

or dH < 0 and M < Man and 1 otherwise. This is necessary to model the physical observation that after a field
reversal, the changes in magnetization are purely reversible until the anhysteretic value is reached.

The reversible magnetization is given by the algebraic relationship

Mrev = c(Man −Mirr)

where c is a material parameter which quantifies the reversibility of the material. The total magnetism is the sum of
the reversible and irreversible magnetizations which yields

M = (1− c)Mirr + cMan. (5)

The relation (5) can be reformulated as a differential equation

∂M

∂H
= F (H,M) (6)

M(H0) = M0

where

F (H,M) =
1

1 + cα∂Man

∂H

[
δ̂

Man −M

kδ − α̂(Man −M)
+ c

∂Man

∂H

]
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with α̂ = α
1−c . The anhysteretic magnetization Man can be taken as either the Ising model (2) or the Langevin

model (3).
The anhysteretic behavior modeled by the Ising relation (2) and total magnetization specified by (5) or (6)

are illustrated in Figure 2. The parameter values are a = 7012 A/m, k = 400 A/m, α = −0.1, Ms = 7.65 ×
105 A/m and c = 0.18. which were determined in [8] through a least squares fit to data measured under isothermal
conditions at room temperature. We point out that the model exhibits a nonlinear dependence on the parameters
k and c arising in Mirr and Mrev as well as the parameters Ms, α and a arising in Man. This necessitates the
development of nonlinear adaptive identification techniques to update parameter values online to accommodate
changing environmental conditions such as temperature.

2.2 Transducer Models

The models (5) or (6) quantify the nonlinear hysteretic relationship between the imposed field and the resulting
magnetization in a magnetostrictive material. However, the magnetoelastic coupling which provides the materials
with magnetostrictive properties has not yet been addressed. In applications where stress anisotropies dominate
crystalline anisotropies, experimental data [8] suggests a quadratic dependence of strain on magnetization. This
can be theoretically justified by noting that in present transducer designs, the prestress levels are sufficient to allow
stress anisotropies to dominate crystalline anisotropies so that the strains are primarily due to the quadratic rotation
processes. To incorporate this quadratic dependence the stress-induced in the Terfenol-D rod is specified as

σ = Y e− Y γM2 (7)

where Y denotes Young’s modulus and γ is a magnetoelastic coupling coefficient. This relationship quantifies the
linear Hooke’s relationship between stresses σ and strains e in the Terfenol-D rod as well as the nonlinear hysteretic
dependence of the stresses on applied fields H through the magnetization M .

The relation (7) quantifies the local elastic behavior of the Terfenol-D rod but does not include spatial dependence
nor internal damping in the transducer. We now develop models which specify the displacements and forces generated
by the magnetostrictive transducer due to an input current I(t). A partial differential equation model developed in
[8] and the corresponding ordinary differential equation (ODE) system derived through a finite element discretization
are first summarized. We then demonstrate that the ODE system can be adequately approximated by a second-order
scalar differential equation for transducers which employ flux shaping techniques to minimize end effects.

The left end of the Terfenol-D rod (x = 0) is assumed to be fixed while the right end (x = L) is constrained by
a damped oscillator and has an attached point mass, as depicted in Figure 3. The Kelvin-Voigt damping coefficient
and density of the Terfenol-D rod are denoted by cD and ρ, and the point mass is denoted by ML. The damping
spring has stiffness kL and damping coefficient cL. Strains in the rod are specified in terms of the longitudinal rod
displacement w by e = ∂w

∂x .
The direct use of the constitutive relation (7) will yield an undamped model for the Terfenol-D rod. We assume

that stress is proportional to a linear combination of strain and strain rate to incorporate Kelvin-Voigt damping .

−4 −2 0 2 4

x 10
4

−8

−6

−4

−2

0

2

4

6

8
x 10

5

Applied Field

A
nh

ys
te

re
tic

 M
ag

ne
tiz

at
io

n

−4 −2 0 2 4

x 10
4

−8

−6

−4

−2

0

2

4

6

8
x 10

5

Applied Field

M
ag

ne
tiz

at
io

n

(a) (b)

Figure 2: (a) Anhysteretic magnetization given by (2), and (b) total magnetization specified by (5) or (6).
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Thus, the stress at any point x, 0 ≤ x ≤ L, is given by

σ(t, x) = Y
∂w

∂x
(t, x) + cD

∂2w

∂x∂t
(t, x)− Y γM2(t, x). (8)

The relation (8) is identical to the relation obtained in [8] if the coupling coefficient is defined as γ = λs/Ms

where λs and Ms respectively denote the saturation magnetostriction and saturation magnetization, respectively.
Balancing forces yields

ρA
∂2w

∂t2
=

∂Ntot

∂x
(9)

where A is the cross sectional area of the Terfenol-D rod and the force resultant is specified by

Ntot(t, x) = Y A
∂w

∂w
(t, x) + cDA

∂2w

∂x∂t
(t, x)− Y AγM(t, x)2.

To obtain appropriate boundary conditions, we first note that w(t, 0) = 0. Balancing forces at x = L yields

Ntot(t, L) = −kLw(t, L)− cL
∂w

∂t
(t, L)−ML

∂2w

∂x∂t
(t, L).

Initial conditions are taken to be w(0, x) = 0 and
∂w

∂x
(0, x) = 0.

As detailed in [8], formulation of the model (9) in weak form and spatial discretization utilizing linear finite
elements yields the vector ODE system

M~̈x + C~̇x +K~x = γB [
M2(H)

]
(t)

~x(0) = ~x0, ~̇x(0) = ~x1

(10)

where ~x(t) ∈ RN specifies the states, M ∈ RN×N , C ∈ RN×N , K ∈ RN×N respectively denote the mass, damping
and stiffness matrices, and B ∈ RN contains integrated basis functions resulting from the inputs. For general systems,
large N (e.g., N = 32) may be required to achieve convergence. This may limit the speed at which model-based
control designs can be implemented.

For transducer design in which the permanent magnet is constructed to minimize end effects, measurements with
a Hall probe indicate that nearly uniform fields

H(t, x) = nI(t) (11)

are achieved along the length of the rod – here n denotes the number of coils per unit length in the solenoid. In
such cases, each finite element section of the rod reacts identically to the uniform magnetic field which motivates the
consideration of a lumped scalar model

mẍ + cẋ + kx = ζ
[
M2(H)

]
(t)

x(0) = x0 ẋ(0) = ẋ0

(12)

where m, c, k and ζ are parameters which must be estimated for a given transducer construction.
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Figure 4: Comparison of the lumped model (13) with the finite element model (10) linearized about the bias level
(H0,M0) with (a) N = 2, and (b) N = 256.

Experiments also indicate that for moderate drive levels about a bias (H0,M0), stresses exhibit an approximately
linear dependence on the magnetization but a nonlinear and hysteretic dependence on the field H or current I to the
solenoid. This observation motivates us to linearize about the bias level M0 to obtain the final model

ẍ + ĉẋ + k̂x = ζ̂ [M(H)] (t)
x(0) = x0 ẋ(0) = ẋ0.

(13)

The scalars ĉ, k̂ and ζ̂ are determined through a fit to the Galerkin approximation (10) or data from the physical
device. A least squares fit to the Terfenol-D data reported in [8] yielded the parameter values ĉ = 7.8899 × 103,
k̂ = 6.4251 × 107 and ζ̂ = 1.3724 × 10−2. The accuracy of the lumped model (13) for transducer designs having
minimal end effects is illustrated in Figure 4 where it is compared with the finite element model (10) linearized about
the bias level (H0,M0). The accuracy of the finite element model for characterizing the physical device is reported
in [7, 8]. Finally, we note that while the model (13) exhibits a linear dependence on M , it retains the fully hysteretic
and nonlinear dependence on H and I through the relations (6) and (11).

3 Nonlinear Adaptive Parameter Estimation Algorithms

The previous section summarized the PDE model developed in [8] and discussed the development of a second order
scalar ODE model (13) quantifying the tip displacement generated by an applied field or current in the Terfenol-D
transducer depicted in Figure 1a. The material parameters in the magnetization model (6) were initially identified
under the assumption of a constant operating temperature. However, in industrial applications the assumption of
fixed temperature is often invalid due to Joule heating resulting from eddy currents and ohmic heating in the solenoid.
This necessitates the development of nonlinear adaptive identification techniques to update slowly varying material
parameters to accommodate the effects of changing temperatures.

In particular, the model parameter a in the nonlinear hysteretic magnetization model (6) has been observed to
reflect changes in behavior due to temperature as noted in (4) and the subsequent discussion. Figure 5 illustrates
the effect of temperature changes on the H-M relationship quantified by the model (6) for two different values of the
parameter a. In this initial development, we focus on the development of nonlinear adaptive parameter estimation
techniques to update a to accommodate temperature-dependencies.

To accomplish this, we consider the theory in [17, 18] and develop modifications required for the magnetostrictive
transducer model employed here. To begin, we will summarize the relevant aspect of the nonlinear adaptive parameter
estimation algorithms discussed in [17, 18]. Since the algorithms developed in [17, 18] identify nonlinearly occurring
parameters in first-order differential equations, we must subsequently extend these concepts in order to develop a
nonlinear adaptive parameter estimation algorithm appropriate for second-order ODE systems such as the model
(13) developed to quantify transducer behavior in response to nonlinear and hysteretic inputs.
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Figure 5: The H-M relation quantified by (6) for two different values of a: (-) a = 7012, (- -) a = 6300.

3.1 Scalar Case

The nonlinear parameterization techniques developed in [17, 18] are based on the assumption that all states are
available in systems of the form

ẏ = −λy + νf(u(t), θ)

where λ > 0 and ν are scalars, θ ∈ Θ is an unknown parameter and Θ is the bounded region in Rm. The function f
is taken to be a scalar-valued nonlinear function of the input u(t). For example, in the numerical results presented
in Section 4, f is taken to be the magnetization model (6), u(t) is the applied field or current, and θ is taken to be
the nonlinearly occurring parameter a. As motivated by [17, 18], we consider the estimation algorithm

˙̂y = −λ

[
ŷ − ε sat

(
ỹ

ε

)]
+ f(u, θ̂)− ν∗sat

(
ỹ

ε

)
ỹ = ŷ − y

ỹε = ỹ − ε sat
(

ỹ

ε

)
˙̂
θ = −ỹεφ

∗

(14)

where ε > 0, sat(·) is a saturation function defined by

sat(x) =


1, x ≥ 1
x, |x| < 1

−1, x ≤ −1

and ν∗ and φ∗ are the solution of

ν∗ = min
φ∈Rm

max
θ∈Θ

J(θ, φ)

φ∗ = arg min
φ∈Rm

max
θ∈Θ

J(θ, φ)

J(θ, φ) = sat
(

ỹ

ε

) [
f(u, θ̂)− f(u, θ)− φT (θ̂ − θ)

]
.

(15)

We note that when |ỹ| < ε, the adaptation of the parameters stops, imposing what is termed a dead-zone. The
method will continue to adapt the parameters until the magnitude of the error ỹ is less than the given ε.

We consider the min-max algorithm (15) to handle the regions of nonconvexity of f where the gradient method
is insufficient as discussed in Section 1. The use of a tuning error ỹε rather than a tracking error ỹ ensures continuity
of the adaptation as does the use of a saturation function rather than a signum function [18].

Defining θ̃ = θ̂ − θ and x = [ỹ, θ̃T ]T , it can be shown that the system (14) is stable about y = 0 by proving that

V = ỹ2
ε + θ̃2

8



is a Lyapunov function. To illustrate the manner through which this is established, we summarize details from the
original proof in [18].

Summary of Proof from [18]: We first note that

V̇ = 2ỹε
˙̃yε + 2θ̃ ˙̃

θ.

If |ỹ| ≤ ε, then ỹε = 0 so it follow that V̇ = 0. We then need to show that V̇ ≤ 0 if |ỹ| > ε. We can represent V̇ as

V̇ = 2ỹε

[
−λ

(
ŷ − ε sat

(
ỹ

ε

))
+ f(u, θ̂)− ν∗sat

(
ỹ

ε

)
+ αy − f(u, θ)

]
− 2θ̃ỹεφ

∗

= −2λỹε ỹε + 2ỹε

[
f(u, θ̂)− f(u, θ)− θ̃φ∗ − ν∗sat

(
ỹ

ε

)]

= −2λỹ2
ε + 2ỹε

[(
f(u, θ̂)− f(u,w)− θ̃φ∗

)
− ν∗sat

(
ỹ

ε

])
.

If ỹ > 0, then sat
(

ỹ
ε

)
= 1 so we must have

ν∗ ≥ sat
(

ỹ

ε

) [
f(u, θ̂)− f(u, θ)− w̃φ∗

]
for all θ ∈ Θ. (16)

This implies that we can let

ν∗ = max
θ∈Θ

sat
(

ỹ

ε

)[
f(u, θ̂)− f(u, θ)− w̃φ∗

]
for any φ∗.

The inequality (16) is satisfied by the definition of φ∗ and ν∗ so that V̇ ≤ 0.
If ỹ < 0, then sat

(
ỹ
ε

)
= −1 so we must have

ν∗ ≥ −
[
f(u, θ̂)− f(u, θ)− θ̃φ∗

]
for all θ ∈ Θ

or

ν∗ ≥ sat
(

ỹ

ε

) [
f(u, θ̂)− f(u, θ)− w̃φ∗

]
for all θ ∈ Θ. (17)

Again we can let

ν∗ = max
θ∈Θ

sat
(

ỹ

ε

) [
f(u, θ̂)− f(u, θ)− w̃φ∗

]
for any φ∗.

By the definition of φ∗ and ν∗ the inequality (17) is satisfied, hence V̇ ≤ 0. 2

To implement the method proposed in the system (14), it is necessary to solve the min-max problem (15). To do
so, we must construct a concave cover F (θ) and convex cover F (θ) where the covers satisfy

F (θ) ≥ f − f̂ F (θ) ≤ f − f̂

with f̂ = f(u, θ̂). The following definitions and construction are summarized from [18].

Definition 1: A point θ0 ∈ θc if θ0 ∈ Θ and

∇fθ0(θ − θ0) ≥ f − f0 (18)

where ∇fθ0 ≡ ∂f

∂θ

∣∣∣∣
θ0

and f0 = f(φ, θ0).

Definition 2: θ̃c ≡ θc ∩Θ where θc is the complement of θc.

9
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Figure 6: Convex cover F (θ) and concave cover F (θ) of f(u, θ).

If f is not concave on Θ, then θ̃c is given by θ̃c = {θ12, θ34, . . . , θmn} where θij = [θi, θj ], θj ≥ θi, are the regions
where f is not concave. Using Definitions 1 and 2, the concave cover of f − f̂ on Θ can be subsequently constructed
as

F (θ) =

{
f − f̂ , for all θ ∈ θc

ωijθ + cij , for all θ ∈ θij ∈ θ̃c

(19)

where

ωij =
f j − f i

θj − θi
, cij = f i − f̂ − ωijθi, f i = f(φ, θi).

Similarly, we construct a convex cover of f − f̂ by defining

θv ≡ {θ0 | ∇fθ0(θ − θ0) ≤ f − f0}
θ̃v ≡ θv ∩Θ

F (θ) =

{
f − f̂ , for all θ ∈ θv

ωijθ + cij , for all θ ∈ θij ∈ θ̃v .
(20)

An illustrative example of a convex and concave cover of a function f is depicted in Figure 6.
Once we have constructed F (θ) and F (θ), a closed form solution to the min-max problem (15) is given by

ν∗ = F (θ̂)

φ∗ =

{ ∇fθ̂, if θ̂ ∈ θc

ωij , if θ̂ ∈ θij ∈ θ̃c

if ỹε > 0

ν∗ = −F (θ̂)

φ∗ =


∇fθ̂, if θ̂ ∈ θv

ωij , if θ̂ ∈ θij ∈ θ̃v

if ỹε < 0 .

(21)

A proof that (21) is the solution to (15) can be found in [18].
Having established the stability of the adaptation method by the Lyapunov function, we now seek sufficient condi-

tions which guarantee uniform asymptotic stability of the system (14). We summarize the condition for convergence
of the parameters and tracking error in the following theorem presented from [17].

Theorem 1: If for every t1 > t0, there exists T0, ε0, δ0, and a subinterval [t2, t2 + δ0] ∈ [t1, t1 + T0] such that

β

∫ t2+δ0

t2

ν
[
f(u, θ̂(t2))− f(u, θ)

]
dτ ≥ 2ε + ε0||θ̃(t2)|| , (22)

then the origin y = 0 is uniformly asymptotically stable.
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In Theorem 1, β = 1 if f(u, θ̂) is convex and β = −1 if f(u, θ̂) is concave. We note several differences between
this condition and the condition for a linear parameterization. First, the sign of the integral is important. The sign
is not strictly determined by f(u, θ̂) − f(u, θ) but also by the convexity or concavity of f as indicated by β. This
coupling arises from the min-max algorithm and is necessary but not sufficient to ensure that the method will leave
the dead zone |ỹ| ≤ ε. The integral must also be sufficiently large to leave the deadzone, which necessitates the term
incorporating ε on the right hand side of (22).

Whereas Theorem 1 places the excitation conditions on f , we wish to derive conditions on u(t) since we have
some freedom when choosing u(t). Theorem 1 does not give conditions on the input u to satisfy the inequality (22)
nor does it guarantee that such an input exists. Inequality (22) includes two components. First, the magnitude of the
integrand must be sufficiently large. For a large parameter error, the input must be such that the difference between
the function evaluated at the actual parameter and the parameter estimate is adequately large; therefore we desire
an input signal which drives the function f to a level where a change in the parameter is most noticeable. Secondly,
the integral must be the same sign as β. This condition states that if f is convex, then the integrand should be
positive and, conversely, if f is concave, then the integrand should be negative. The min-max feature of the algorithm
provides stability, but an acceptable input must be used to guarantee parameter convergence. Parameter convergence
is ensured by updating using the gradient information and we must pick an input signal accordingly.

To ensure parameter convergence, we summarize the persistent excitation conditions developed in [17] for the
input u.

Persistent Excitation Conditions:

3.1(a). For a given θ̃, u must reverse the sign of the integrand of (22) while keeping the convexity/concavity of f
fixed.

or

3.1(b). For a given θ̃, u must reverse the convexity/concavity of f , while preserving the sign of the integrand in
equation (22).

A numerical example illustrating these conditions is provided in Section 4.

3.2 Vector System

The nonlinear identification algorithm developed in [17, 18] and summarized in Section 3.1 is for scalar differential
equations and hence is not directly applicable to higher-order differential equations or systems of differential equations
of the type arising in physical applications such as the quantification of hysteresis in a magnetostrictive transducer.
In this section, we extend the nonlinear parameter identification algorithm to systems of differential equations. We
develop the analysis in the context of the motivating second-order system but note that it is sufficiently general to
include higher-order systems.

To extend the method to vector systems, we must redefine several of the variables from the scalar case. Since
we want to use the solution to the min-max problem (15), we must ensure that we do not affect that aspect of the
formulation.

Consider the identification of nonlinearly occurring parameters in the matrix system

ẏ = Ay + Bf(u, θ) (23)

where A ∈ R2×2 and B ∈ R2×1. We consider the adaptation algorithm

˙̂y = Aŷ + B

(
f(u, θ̂)− a∗sat

(
ỹε

ε

))
ỹ = ŷ − y

˙̂
θ = −γỹεφ

∗

ỹε = B2p2ỹ1 + B2p3ỹ2

(24)
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where p2 and p3 are scalars to be determined, γ > 0 is a scalar gain, B2 is the (2,1) component of vector B, and a∗

and φ∗ are solutions of the min-max problem

a∗ = min
φ∈Rm

max
θ∈Θ

g(θ, φ)

φ∗ = arg min
φ∈Rm

max
θ∈Θ

g(θ, φ)

g(θ, φ) = sat
(

ỹε

ε

) [
f(u, θ̂)− f(u, θ)− φT (θ̂ − θ)

]
.

(25)

It is important to note that the solution to the min-max problem (25) is the solution to (15) so this aspect of the
adaptive estimation is the same as the scalar case. A notable differences between the matrix system method (25) and
the scalar method (15) is the definition of ỹε. The alteration of ỹε is necessary for the Lyapunov candidate utilized
for the vector system.

The following theorem ensures the globally asymptotic stability of the adaptive parameter estimation algo-
rithm (24).

Theorem 2: If the vector differential equation (23) is globally asymptotically stable, the adaptive parameter estima-
tion algorithm (24) is globally asymptotically stable.

Proof: We consider the Lyapunov function
V = γỹT P ỹ + θ̃2 (26)

where P is a symmetric positive definite matrix. Taking the derivative of (26) yields

V̇ = γ ˙̃yT P ỹ + γỹT P ˙̃y + 2θ̃ ˙̂
θ

with
˙̃y = Aỹ + B

[
f̂ − f − a∗sat

(yε

ε

)]
.

Employing the definitions of ˙̃y and ˙̂
θ, we can write

V̇ = γ
(
ỹT AT P ỹ + ỹT PAỹ

)
+ 2γ

([
f̂ − f − a∗sat

(yε

ε

)]
BT P ỹ − ỹεθ̃φ

∗
)

. (27)

Since A is globally asymptotically stable, for any symmetric positive definite matrix Q there exists a symmetric
positive definite matrix P such that AT P + PA = −Q (e.g., see [2]). Denoting

P =
[

p1 p2

p2 p3

]
,

we have BT P ỹ = ωp2ỹ1 + ωp3ỹ2 = ỹε. Substituting this into (27) yields

V̇ = −γ
(
ỹT Qỹ

)
+ 2γỹε

(
f̂ − f − θ̃φ∗ − a∗sat

(yε

ε

))
.

The proof that V̇ < 0 is completed by utilizing the definitions of a∗ and φ∗ as the solutions of (25) in a manner
similar to that employed in the proof in the scalar case. Note that the parameters p2 and p3 can be determined for
any symmetric positive definite choice of Q. 2

Notable differences between the vector parameter estimation algorithm and the scalar algorithm include the lack
of a dead-zone and the omission of the ε sat( ỹ

ε ) term in the definition of ˙̂y. These alterations are due to the form of
the Lyapunov function.

4 Numerical Examples

Scalar and vector examples are provided to demonstrate properties of the nonlinear adaptive parameter estimation
algorithms. In both examples, the nonlinear function is taken to be the (6) for the magnetization M with the input u
being the applied field H. As stated previously, the nonlinearly occurring parameter a(T ) in the magnetization model
reflects changes in the transducer behavior due to temperature changes. We make the assumption that the value
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Figure 7: Control trajectory for the milling process and regime during which adaptive estimation occurs.

of a is slowly varying so that the value can assumed to be fixed during the nonlinear parameterization estimation
process. During operation, the temperature of the transducer may change and the corresponding value of a can be
re-identified during the operation of the transducer.

To provide a specific operating regime, we consider the use of the magnetostrictive transducer depicted in Figure 1a
for milling out-of-round automotive products at speeds of 3000 rpm and tolerances of 1 µm as described in [26]. The
specified trajectory for the cutting head attached to the Terfenol-D rod is depicted in Figure 7. The cutting head
starts from rest, is moved to a prescribed position adjacent to the ingot, and then is cycled periodically to produce
the desired shape in the automotive product. It is during the initial positioning stage that the nonlinear adaptive
identification algorithms are utilized to accommodate thermally-induced changes in the transducer behavior, and it
is only during the subsequent periodic cutting stage that the accuracy of 1 µm must be maintained.

For both the scalar and vector examples, the parameters in the magnetization model (6) are taken to be k =
400 A/m, α = −0.1, Ms = 7.65 × 105 A/m, c = 0.18 and the true value of a is taken as 7012 A/m. Also, both
examples assume that â is bounded with â ∈ [6300, 7300] and â(0) = 6990. The bounds imposed on â can be
determined from experiments under various temperature regimes.

4.1 Scalar Case

We illustrate first the scalar case. The dynamics of the system are specified by the differential equation

ẏ = −λy + M(H, a)

with the scalar λ is taken to be 100 and M specified as the solution to (5) or (6).
One issue in the adaptive parameter estimation algorithm is the construction of inputs u(t) = H(t) which will

guarantee persistent excitation. The conditions imposed for excitation prompt the use of a signal that does not
cause the function M to change signs. It is observed that a monotonically increasing input provides persistent
excitation as well as quick convergence. The input field H(t) was chosen to be a linear function which drives the
magnetization to levels where variations in the parameter a are most significant as well as realistically simulating the
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Figure 8: (a) Value of the integrand in (22), and (b) resulting value of M(u, â) provided by (5) or (6).
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Figure 9: (a) Parameter estimate â and true value a = 7012 A/m, and (b) tracking error ỹ for scalar case.

initialization procedure for the milling application. Figure 8a illustrates the integrand of (22) for a given value of θ̃
to demonstrate that Persistent Excitation Condition 3.1(b) is met. The integrand remains positive while switching
the convexity/concavity of the function M as seen in Figure 8b.

Figure 9 illustrates the capability of the scalar nonlinear parameter estimation method to accurately estimate the
unknown parameter a. Figure 9a depicts the evolution of the parameter estimate â which quickly converges from the
intial value of a = 6990 A/m to the true value of a = 7012 A/m. The tracking error ỹ is plotted in Figure 9b. The
speed of convergence of the estimation algorithm is important since this identification method could potentially be
combined with a control technique for online estimation prior to control. We note that the time scales in Figures 8
and 9 are scaled to that in Figure 7 – the convergence rates of both the integrand of (22) and the estimation algorithm
are determined by the time needed to cycle the magnetization which can be modified according to the application.

4.2 Vector System

We illustrate here the nonlinear adaptive parameter algorithm for a vector system as developed in Section 3.2. The
system we consider is the damped spring mass system (13) used to model the transducer dynamics in response
to nonlinear and hysteretic inputs with the coefficients specified in Section 2.2. The values of the domain wall
model parameters are those specified in Section 4.1. Again, the parameter a is to be determined because of its
temperature-dependence. The gain γ is taken to be 5× 1010 and P is found utilizing the matrix

Q =
[

1× 1010 0
0 1× 10−8

]
.

We employ the same applied magnetic field as in the scalar example.
The convergence of the estimate Â for the vector system is illustrated in Figure 10 while Figure 11 illustrates the

tracking error of the adaptive system for the vector system in which ỹ = [ỹ1, ỹ2] denotes the tracking error in the
states y = [y1, y2].
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Figure 10: Parameter estimate â and true value a = 7012 A/m for the vector system.
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Figure 11: Tracking errors (a) in the displacement ỹ1, and (b) velocity ỹ2 for the vector system.

There are a number of numerical issues associated with the implementation of the estimation algorithms for the
scalar or vector systems. Inaccuracy in the solution can cause the value of ỹ to have discontinuous jumps from
positive to negative values. This phenomena causes the min-max solution to jump between utilizing the convex cover
and concave cover which, in turn, can cause highly oscillatory behavior in the parameter updates. The models must
be solved numerically and since implicit methods are not feasible because of the unknown forcing function at the
next time step, the time step must be sufficiently small to ensure accurate solutions of the model. These issues have
been addressed numerically and the experimental implementation of the algorithm is under present investigation.

5 Concluding Remarks

The nonlinear parameter identification technique developed in [17, 18] has been shown to be effective for identifying
and updating a temperature-dependent parameter in the nonlinear domain wall model incorporated as the forcing
function in a scalar ODE. We have also extended this parameter identification method to apply to second-order
systems. In this latter framework, this adaptive parameter estimation algorithm can be used to estimate and
update parameters in a wide range of hysteretic systems including SMAs, ferroelectrics and ferromagnetics. Due
to the persistent excitation conditions placed on the input to the hysteresis model, there are potential difficulties
in employing the scalar method as a closed-loop nonlinear adaptive control method by considering the nonlinear
function in the dynamics to be the composition of an approximate inverse model and the hysteresis system as was
done linearly in [33, 34]. The vector method does not require persistent excitation conditions and hence it may be
amenable to incorporation in adaptive control methods utilizing inverse models.

For control designs utilizing this parameter identification method, one can identify the temperature-dependent
parameter a in the hysteresis model while the transducer is being initialized. Once the hysteresis model is completely
determined, a partial inverse compensation method, e.g., [20] or [26], could be applied. The method in this paper
can subsequently be employed to periodically re-identify the parameters in the hysteresis model to ensure accurate
modeling as the parameters slowly vary due to the internal heat generated by either the solenoid or surrounding
media. This may be more efficient and accurate than current methods of parameter identification, such as least
square fits to data, and can be performed online. The next step would be to apply this method to multiple unknown
parameters, i.e., θ ∈ Rm. This method potentially could provide a new method to identify the full set of parameters,
{a, k, c, α, Ms}, simultaneously. While the method can theoretically accommodate multiple parameter identifica-
tion, there are numerical difficulties in identifying the regions of concavity and convexity. In the one parameter case,
we need only to identify linear functions to cover the nonconvex or nonconcave sections of the nonlinear function
whereas in a multiple parameter identification bounding hyperplanes are required.
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